

FRANKLIN UNIVERSITY PROFICIENCY EXAM (FUPE) STUDY GUIDE

Course Title:	Probability and Statistics (MATH 380)
Recommended Textbook(s):	Probability and Statistics for Engineers and Scientists, 6 th edition, Walpole, Myers, Myers, Pearson Education, 1998
Number & Type of Questions:	16 multiple part problems
Permitted Materials:	Programmable and/or graphic calculator, 8.5" x 5.5" student written note card.
Time Limit:	None (At least 3 hours recommended)
Minimum Passing Score:	75% (300 points)

Description of the Test:

- Standard Normal Distribution, Student's T Distribution, F-Distribution and Chi-squared Distribution tables will be provided; however a calculator with built-in tables may be used instead.
- Although some problems on the test require a basic understanding of integral calculus, all of the problems requiring integration involve definite integrals and hence the integration may be done on a calculator.
- The student is expected to show enough work on problems that the grader can determine the method (calculator, had computation, table, etc.) that the student used to obtain the answer. Because some questions involve multiple steps, the grader will give credit for answers that show consistency and follow-through.
- Many questions have multiple parts. The student should attempt all parts of the question. No credit will be given for blanks! If the student shows a basic understanding of the concept, some credit can be given even if the computation is not correct.
- All probability values must be displayed correct to four decimal places. Statistics should be determined to two places further than the data set.
- The entire test must be taken in one sitting.
- Problems on the test are open-ended and similar to those in the exercises in the textbook. There are no single answer or multiple-choice questions.

Knowledge & Skills Required:

The following topics will form the basis of the FUPE exam.

Торіс	Level of Mastery	Text Chapter ¹
Descriptive statistics, including mean, median, mode, range, quartiles, percentiles, outliers, extreme outliers	Compute values by hand (using a calculator but not the statistical functions of the calculator).	1
Descriptive statistical displays, including stem-and-leaf display, boxplot, time series plots, histogram	Complete required computations, construct and interpret display.	3
Frequency data	Compute mean, mode, variance, and percentiles.	3
Random variables and probability, including properties, dependency, complement, mutual exclusivity	Compute probabilities of an event; determine the correlation of two events; determine whether two events are independent; determine whether two events are mutually exclusive.	3
Continuous probability distribution	Determine the mean, variance and standard deviation of the distribution when given the probability density function.	3 and 6
Normal probability distribution	Determine probabilities associated with a normal distribution given mean and standard deviation of the distribution using either a calculator or table.	6
Normality plots	Use a normality plot to determine whether a function is normal.	6
Discrete probability distributions	Determine the mean, variance and standard deviation of the distribution when given the probability mass function. Verify that the distribution fits the properties of a probability distribution.	3 and 5
Binomial distribution	Calculate the probabilities associated with a situation illustrating a binomial distribution and determine the mean and variance of that probability distribution.	5
Poisson distribution	Calculate the probabilities associated with a situation illustrating a Poisson distribution and determine the mean and variance of that probability distribution.	5
	Describe the characteristics of a binomial and	5

¹ Walpole, Myers, Myers, *Probability and Statistics for Engineers and Scientists*, 6th edition, Pearson Education, 1998.

	Poisson distribution and whether a binomial or	
	Poisson distribution is a better model for an	
	application.	
Normal approximation to the	Approximate probabilities for binomial and	6
binomial and Poisson	Poisson distributions with a normal	
distributions	distribution.	
Correlation of two variables	Determine and interpret the correlation	11
	coefficient between two variables and	
	determine whether the variables are	
	independent.	
Multiple random variables	Determine the mean and variance of a random	12
1	variable that is a linear combination of random	
	variables.	
Central Limit Theorem	Explain what constitutes the "sampling	8
	distribution of means." describe the	
	distribution, and determine its mean and	
	variance.	
	Define a random sample.	
	State the CLT.	
	Apply the CLT to a sampling distribution of	
	means.	
Terminology associated with	Use the proper terminology when discussing a	8, 9, and 10
inferential statistics, including	solution.	-, -,
sample, population, statistic,		
parameter, standard error of a		
statistic. estimated standard		
error, bias, mean square error.		
point estimate, interval		
estimate, hypothesis test, level		
of significance.		
Hypothesis tests	Apply the logical reasoning underlying	10
	hypothesis testing.	
	For each and every hypothesis testing situation:	
	• Determine the parameter.	
	• State the correct null and alternative	
	hypotheses using the correct symbols	
	• State the underlying assumptions or criteria	
	for the particular test and the sampling	
	assumptions (e. g. simple random sample)	
	 Determine the probability density function 	
	that will be used to calculate the test	
	statistic	
	Determine the test statistic	
	State the oritical region and aritical value(.)	
	• State the critical region and critical value(s) for the test.	
	• Determine the p-value and interpret it.	

	~	
	• Determine the decision in the test and state	
	the reason for the decision.	
	• Interpret the decision (conclusion).	
Type I and Type II error	In a given hypothesis testing situation.	10
analysis	determine what decision would constitute a	-
	Type Lerror and determine the consequences of	
	that arror and the probability of that arror	
	that error and the probability of that error.	
	T 1 1 1 1 1 1 1 1	
	In a given hypothesis testing situation,	
	determine what decision would constitute a	
	Type II error and determine the consequences	
	of that error and the probability of that error.	
	Explain how Type I and Type II errors are	
	related.	
	Determine how sample size affects the	
	probability of a Type II error.	
Confidence intervals	For the given parameter:	9
	State the parameter	
	• State the parameter.	
	• State any assumptions or criteria for the	
	interval.	
	• Determine the interval.	
	• Interpret the interval in terms of the	
	situation.	
Hypothesis tests and	Conduct each of these hypotheses tests using	9 and 10
confidence intervals for:	the procedure outlined above.	
• mean with variance known	Construct a confidence interval for each	
	parameter using the procedure above.	
• mean with variance	Determine the size of a sample necessary for	
• mean with variance	confidence interval	
unknown (large sample)	Determine probability of Type II error	
	Determine probability of Type II error.	
• mean with variance	Use student's t-distribution.	
unknown (small sample)		
• variance	Use chi-squared distribution.	
 proportion 	Determine sample size and the probability of a	
	Type II error.	
• difference of two means	Distinguish between a dependent and an	
(dependent samples)	independent situation and conduct the proper	
(F	hypothesis test or construct the proper	
	confidence interval	
• difference of two means	Distinguish between a dependent and an	
(independent complex)	independent situation and conduct the proper	
(independent samples)	hypothesis test or construct the proper	
	nypomesis test or construct the proper	
	confidence interval	

difference of two proportions	Determine the appropriate sample size for the confidence interval.	
• ratio of two variances	Use F-distribution)	
difference of two or more means	Use analysis of variance (ANOVA-one Way)	
Linear regression	Determine the independent and dependent variables. Define "residual" and interpret the properties of the residuals. Determine the linear regression equation and use the equation for predictions. Explain what is meant by "least squares regression." Interpret the Minitab output from a multiple regression analysis.	11
Design of experiments	Provide an overview of the strategy for experimentation.	1 and 3